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Introduced species can become invasive, damaging ecosystems and disrupt-
ing economies through explosive population growth. One mechanism
underlying population expansion in invasive populations is ‘enemy release’,
whereby the invader experiences relaxation of agonistic interactions with
other species, including parasites. However, direct observational evidence
of release from parasitism during invasion is rare. We mimicked the early
stages of invasion by experimentally translocating populations of mite-para-
sitized slender anole lizards (Anolis apletophallus) to islands that varied in the
number of native anoles. Two islands were anole-free prior to the introduc-
tion, whereas a third island had a resident population of Gaige’s anole
(Anolis gaigei). We then characterized changes in trombiculid mite parasitism
over multiple generations post-introduction. We found that mites rapidly
went extinct on one-species islands, but that lizards introduced to the
two-species island retained mites. After three generations, the two-species
island had the highest total density and biomass of lizards, but the lowest
density of the introduced species, implying that the ‘invasion’ had been
less successful. This field-transplant study suggests that native species can
be ‘enemy reservoirs’ that facilitate co-colonization of ectoparasites with
the invasive host. Broadly, these results indicate that the presence of intact
and diverse native communities may help to curb invasiveness.
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Figure 1. Changes in the number of mites within and among generations for populations and individual founder lizards. (a) Slender anole (Anolis apletophallus) and
Gaige’s anole (A. gaigei). Photos by John David Curlis. Total number of mites on slender anole lizards for the mainland (b), islands with one species (c,d ) and two species (e)
in the founding generation (F0) and two successive generations (F1 and F2). Lines indicate medians and range. Mites disappeared from all lizards on one-species islands (a,b)
but persisted for three generations on the two-species island (c). ( f ) Initial and final numbers of mites in individual founder lizards that persisted on islands for multiple
years (each line represents an individual lizard). Founding individuals invariably lost all mites on one-species islands but retained or gained mites on the two-species island.
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1. Introduction
Humans are rapidly homogenizing the world’s biota by
transporting species around the globe [1–4]. Some introduced
species have become invasive, wreaking great damage to
ecosystems [5–12] and impacting agricultural and natural
extractive industries to the tune of millions of dollars per
year [13–16]. Indeed, the impact of invasive species is predicted
to become increasingly dire in the context of global change
[17–19]. A common feature of invasive species is rapid popu-
lation expansion following initial colonization [20–24], which
has been linked to ecological release from previous sources
of population regulation. Explosive population growth can
result from reduced interactions with predators [25], competi-
tors [26] and parasites [27–29]—a process termed ‘enemy
release’ [30–33]. In particular, many non-native species experi-
ence either reduced or absent parasites post-introduction, and
this seems to enhance their ecological dominance [27–29,34].
Previous studies that have observed parasite loss during inva-
sion have tended to be observational in nature [27–29,35]
and were conducted after species became established or inva-
sive during the generations after initial colonization [27–
29,35,36]. However, experimental support for enemy release
during biological invasions is rare [33,37]. Thus, the timescale
and specific factors that regulate parasite persistence or loss
during the early stages of invasion remain poorly understood.

We used a field-transplant experiment to examine the
impact of the presence of a native congener on the dynamics
of ectoparasite infections in the colonization stage of repli-
cated biological invasions. We experimentally introduced
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Figure 2. Density and biomass of lizards on each island, as well body size and parasitism of Gaige’s anoles. Density of lizards (a) and lizard biomass (b) on islands,
based on mark recapture over three lizard generations. Mites persisted only on a two-species island with high total lizard density and biomass per unit area.
(c) Body length and body mass of slender and Gaige’s anoles on the two-species island (island D), the island where mites persisted. Symbols indicate
mean ± SEM. (d ) Intensity of mite infection on the source (mainland) population of slender anoles, and both slender and Gaige’s anoles on island D. Lines indicate
median and range. Gaige’s anoles, which are longer and heavier than slender anoles, had significantly higher intensity of parasitism than slender anoles from the
mainland, suggesting that they may have served as a reservoir of parasitism during the slender anole invasion.
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Panamanian slender anoles (Anolis apletophallus; hereafter,
‘slender anoles’) to islands that varied in lizard community
structure in Lake Gatún (Panama Canal), Panama, so that we
could followectoparasitism in the generations immediately fol-
lowing colonization. Lake Gatún was formed as a man-made
reservoir during the construction of the Panama Canal [38].
As the Chagres River was dammed around the turn of the
twentieth century, the Chagres Valley was flooded to form
the lake, isolating hundreds of hilltops into small islands [38].
We used these islands as a natural system bywhich to replicate
the colonization stage of biological invasions. Numerous
species of anole lizards have been introduced outside of their
native range and have become invasive [39–43]. We chose
slender anoles because they are abundant, can be readily recap-
tured and have short generation times (approx. 9 months) [44].
Further, slender anoles in central Panama are often parasitized
by the trombiculid mite Eutrombiculus dugesii, which attaches
to the integument of the lizard and uses a feeding tube called
a stylosome to digest and consume lizard scales, skin and inter-
stitial fluid. These ectoparasite infections in lizards can cause
integumental lesions [45,46], alter social and thermoregulatory
behaviour [47,48], decrease growth and body condition [47,49]
and act as vectors for diseases [50].
2. Material and methods
We captured 210 adult slender anoles (figure 1a) from Soberanía
National Park on mainland Panama, measured several
morphological traits and counted mite loads via visual inspec-
tion (electronic supplementary material). We then gave each
individual a unique tag using visible implant elastomers and
released them across three islands (70 lizards per island, equal
sex ratios) in July and August of 2017 (see electronic supplemen-
tary material). While abiotic conditions on islands were generally
similar (see electronic supplementary material), one island had a
resident population of Gaige’s anole (Anolis gaigei), whereas the
other two did not have a resident anole prior to the introduction
of slender anoles. Gaige’s anoles (figure 1a) are likely competi-
tors of slender anoles, with broad overlap in body size, diet
and microhabitat use [51,52].
3. Results and discussion
Slender anoles on the mainland retained mite infections for
the duration of the study, and median abundance of mites
actually increased over the three years of the study (figure 1b).
However, mark recapture studies over the following 2 years
revealed that mites went extinct on both one-species islands
after a single generation and remained absent into the third
generation (figure 1c,d). Indeed, every mite-infested founder
individual (electronic supplementary material) on the
one-species islands that we recaptured in the first year sub-
sequently lost all their mites. Thus, mites were lost very
rapidly within the first generation (figure 1f ). By contrast,
the slender anole population transplanted to the island with
the native Gaige’s anole remained infected with mites into
the third generation (figure 1e). Moreover, many of the
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founding individuals on the two-species island actually
gained mite infections (figure 1f ). Given the high rates of
ectoparasitism that we observed on Gaige’s anoles, it is
likely that the native island population of this species was
infected with mites prior to the introduction of slender
anoles. Total lizard density and biomass per unit area of
both species were highest on the two-species island (elec-
tronic supplementary material), implying that mites might
only be able to persist in relatively dense lizard populations
(figure 2). However, the two-species island had the lowest
density and biomass per unit area of non-native slender
anoles, and the density of slender anoles negatively covaried
( p < 0.001) with the density of Gaige’s anoles (electronic sup-
plementary material) [53]. These results are consistent with
either the negative impact of parasites or interspecific compe-
tition on lizard population size, and these factors are not
mutually exclusive (figure 2). Mites might also have persisted
on the two-species island because Gaige’s anole was a poten-
tially superior host (electronic supplementary material).
Gaige’s anoles were larger in both body length ( p < 0.0001)
and mass ( p < 0.0001) than slender anoles, which provides
greater surface area for attachment (figure 2). Indeed, the inten-
sity of mite infection (number of mites on infected individuals)
was significantly greater ( p < 0.0001) for Gaige’s anoles on
island D than for slender anoles from the mainland source
population (figure 2). Furthermore, infection prevalence was
greater for the slender anole population on the two-species
island than in the mainland source population (p = 0.0301).

We found that ectoparasitic mites on slender anoles were
rapidly extirpated on single-species islands despite increasing
in abundance during the same period in the mainland source
population. However, mites persisted for three generations on
the two-species island. Our results imply that the presence of
a highly parasitized native species might facilitate greater
parasite prevalence and intensity of infection in the intro-
duced species, and this is likely to reduce the fitness and
ecological impact of the invader. Broadly, our data highlight
the importance of community structure for enemy release
during the colonization stage of biological invasions. Biologi-
cal communities that are phylogenetically similar to the
community of the invader may be more resistant to invasion
[54,55], perhaps because either the invader or native species
can serve as alternative hosts to endemic or invading para-
sites. Conversely, previous work has noted that
evolutionarily distinct communities found on islands and
other isolated land masses are especially vulnerable to bio-
logical invasions, because reduced phylogenetic similarity
between invasive species and the invaded community
would facilitate enemy release from ectoparasites and other
enemies [5,20,56]. Given the ubiquity and diversity of inva-
sive species, one important implication of this research is
that more diverse native communities can function as reser-
voirs of parasitism that could ultimately help to curb
invasiveness.
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